Interface IField

All Known Implementing Classes:
CompositeProbe, FieldProbe, RotatedCompositeProbe, SolenoidProbe, StandardSolenoidProbe, TorusProbe, TransverseSolenoidProbe, ZeroProbe

public interface IField
The Interface IField.
Version:
1.0
Author:
David Heddle, Nicole Schumacher
  • Method Summary Link icon

    Modifier and Type
    Method
    Description
    boolean
    contains(double x, double y, double z)
    Check whether the field boundaries include the point
    void
    field(float x, float y, float z, float[] result)
    Obtain the magnetic field at a given location expressed in Cartesian coordinates.
    void
    field(int sector, float xs, float ys, float zs, float[] result)
    Obtain the magnetic field at a given location expressed in Cartesian coordinates for the sector system.
    float
    fieldMagnitude(float x, float y, float z)
    Get the field magnitude in kiloGauss at a given location expressed in Cartesian coordinates.
    float
    Get the maximum field magnitude in kiloGauss
     
    void
    gradient(float x, float y, float z, float[] result)
    Obtain an approximation for the magnetic field gradient at a given location expressed in Cartesian coordinates.
    boolean
    Check whether this field is the zero field (possibly because the scale factor is set to 0)
  • Method Details Link icon

    • getName Link icon

      String getName()
    • field Link icon

      void field(float x, float y, float z, float[] result)
      Obtain the magnetic field at a given location expressed in Cartesian coordinates. The field is returned as a Cartesian vector in kiloGauss.
      Parameters:
      x - the x coordinate in cm
      y - the y coordinate in cm
      z - the z coordinate in cm
      result - a float array holding the retrieved field in kiloGauss. The 0,1 and 2 indices correspond to x, y, and z components.
    • field Link icon

      void field(int sector, float xs, float ys, float zs, float[] result)
      Obtain the magnetic field at a given location expressed in Cartesian coordinates for the sector system. The other "field" methods are for the lab system. The field is returned as a Cartesian vector in kiloGauss.
      Parameters:
      sector - the sector [1..6]
      result - the result is a float array holding the retrieved field in kiloGauss. The 0,1 and 2 indices correspond to x, y, and z components.
      x - the x sector coordinate in cm
      y - the y sector coordinate in cm
      z - the z sector coordinate in cm
    • fieldMagnitude Link icon

      float fieldMagnitude(float x, float y, float z)
      Get the field magnitude in kiloGauss at a given location expressed in Cartesian coordinates.
      Parameters:
      x - the x coordinate in cm
      y - the y coordinate in cm
      z - the z coordinate in cm
      Returns:
      the magnitude of the field in kiloGauss.
    • gradient Link icon

      void gradient(float x, float y, float z, float[] result)
      Obtain an approximation for the magnetic field gradient at a given location expressed in Cartesian coordinates. The field is returned as a Cartesian vector in kiloGauss/cm.
      Parameters:
      x - the x coordinate in cm
      y - the y coordinate in cm
      z - the z coordinate in cm
      result - a float array holding the retrieved field in kiloGauss. The 0,1 and 2 indices correspond to x, y, and z components.
    • getMaxFieldMagnitude Link icon

      float getMaxFieldMagnitude()
      Get the maximum field magnitude in kiloGauss
      Returns:
      the maximum field magnitude in kiloGauss
    • isZeroField Link icon

      boolean isZeroField()
      Check whether this field is the zero field (possibly because the scale factor is set to 0)
      Returns:
      true if this field is a zero field
    • contains Link icon

      boolean contains(double x, double y, double z)
      Check whether the field boundaries include the point
      Parameters:
      x - the x coordinate in the map units
      y - the y coordinate in the map units
      z - the z coordinate in the map units
      Returns:
      true if the point is included in the boundary of the field