SIDIS ===== The differential cross section is given by .. math:: \begin{align} \frac{d\sigma}{dx ~ dy ~ d\phi_S ~ dz ~ d\phi_h ~ dP_{\rm T}^2} = \frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x} \right) \sum_{i=1}^{18} F_i(x,z,Q^2,P_{\rm T}) \beta_i \end{align} where .. list-table:: SIDIS structure functions :widths: 5 5 5 :header-rows: 1 * - :math:`F_i` - Standard Label - :math:`\beta_i` * - :math:`F_1` - :math:`F_{UU,T}` - :math:`1` * - :math:`F_2` - :math:`F_{UU,L}` - :math:`\varepsilon` * - :math:`F_3` - :math:`F_{LL}` - :math:`S_{||}\lambda_e\sqrt{1-\varepsilon^2}` * - :math:`F_4` - :math:`F_{UT}^{\sin(\phi_h+\phi_S)}` - :math:`|\vec{S}_\perp|\varepsilon\sin(\phi_h+\phi_S)` * - :math:`F_5` - :math:`F_{UT,T}^{\sin(\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\sin(\phi_h-\phi_S)` * - :math:`F_6` - :math:`F_{UT,L}^{\sin(\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\varepsilon\sin(\phi_h-\phi_S)` * - :math:`F_7` - :math:`F_{UU}^{\cos2\phi_h}` - :math:`\varepsilon~\cos(2\phi_h)` * - :math:`F_8` - :math:`F_{UT}^{\sin(3\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\varepsilon\sin(3\phi_h-\phi_S)` * - :math:`F_9` - :math:`F_{LT}^{\cos(\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)` * - :math:`F_{10}` - :math:`F_{UL}^{\sin~2\phi_h}` - :math:`S_{||}\varepsilon\sin(2\phi_h)` * - :math:`F_{11}` - :math:`F_{LT}^{\cos\phi_S}` - :math:`|\vec{S}_\perp|\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S` * - :math:`F_{12}` - :math:`F_{LL}^{\cos\phi_h}` - :math:`S_{||}\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h` * - :math:`F_{13}` - :math:`F_{LT}^{\cos(2\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)` * - :math:`F_{14}` - :math:`F_{UL}^{\sin\phi_h}` - :math:`S_{||}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h` * - :math:`F_{15}` - :math:`F_{LU}^{\sin\phi_h}` - :math:`\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h` * - :math:`F_{16}` - :math:`F_{UU}^{\cos\phi_h}` - :math:`\sqrt{2\varepsilon(1+\varepsilon)}~\cos\phi_h` * - :math:`F_{17}` - :math:`F_{UT}^{\sin\phi_S}` - :math:`|\vec{S}_\perp|\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S` * - :math:`F_{18}` - :math:`F_{UT}^{\sin(2\phi_h-\phi_S)}` - :math:`|\vec{S}_\perp|\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)` were .. math:: \begin{align} \varepsilon &= \frac{1-y-\frac{1}{4}\gamma^2 y^2}{1-y+\frac{1}{2} y^2 + \frac{1}{4}\gamma^2 y^2}\, , \\ \gamma &= \frac{2 M x}{Q} \, , \end{align} and in the nucleon rest frame the polarization vector is given by :math:`S=(0,\vec{S}_\perp,S_L)` with :math:`\vec{S}_\perp^2+S_L^2=1`. The 18 structure function in SIDIS at leading-order will be expressed in the context of WW-type approximation in terms of a minimal TMD basis using the gaussian ansatz: .. math:: \begin{align} {\cal F}_q(\xi,p_{\perp})&={\cal K}_q ~ {\cal C}_q(\xi) \frac{\exp\left(-k_{\perp}^2/\omega_q\right)}{\pi \omega_q}\\ {\cal D}_q(\xi,p_{\perp})&={\cal K}_q ~ {\cal C}_q(\xi) \frac{\exp\left(-P_{\perp}^2/\omega_q\right)}{\pi \omega_q}. \end{align} We denote the transverse momentum of the quark inside a fast moving proton by :math:`k`. We use the notation :math:`p_{\perp}` for the transverse momentum of the quark relative to the fragmenting parton motion. The structure functions are expressed as .. math:: \begin{align} F&=\sum_q e_q^2 ~ {\cal K}_q ~ {\cal F}_q(x) ~{\cal D}_q(z) \frac{\exp\left(-P_{\perp}^2/\Omega_q\right)}{\pi \Omega_q}\\ \Omega_q&=z^2\left + \left \end{align} .. list-table:: Nucleon distributions and fragmentation functions :header-rows: 1 * - type - Name - :math:`{\cal K}_q` - :math:`{\cal C}_q` * - :math:`{\cal F}_q` - upol.PDF - :math:`1` - :math:`f_1` * - :math:`{\cal F}_q` - pol.PDF - :math:`1` - :math:`g_1^q` * - :math:`{\cal F}_q` - Transversity - :math:`1` - :math:`{h_1^q}` * - :math:`{\cal F}_q` - Sivers - :math:`\frac{2M^2}{\omega_q}` - :math:`{{f^{\perp(1)q}_{1T}}}` * - :math:`{\cal F}_q` - Boer-Mulders - :math:`\frac{2M^2}{\omega_q}` - :math:`{{h^{\perp(1)q}_1 }}` * - :math:`{\cal F}_q` - Pretzelosity - :math:`\frac{2M^4}{\omega_q^2}` - :math:`{{h^{\perp(2)q}_{1T} }}` * - :math:`{\cal F}_q` - WormGear - :math:`\frac{2M^2}{\omega_q}` - :math:`{{g^{\perp (1) q}_{1T}}}` * - :math:`{\cal F}_q` - WormGear - :math:`\frac{2M^2}{\omega_q}` - :math:`{{h^{\perp (1) q}_{1L}}}` * - :math:`{\cal F}_q` - twist-3 - :math:`1` - :math:`{{g^{q}_{T}}}` * - :math:`{\cal F}_q` - twist-3 - :math:`\frac{2M^4}{\omega_q^2}` - :math:`{ {g^{\perp(2)q}_{T} }}` * - :math:`{\cal F}_q` - twist-3 - :math:`\frac{2M^2}{\omega_q}` - :math:`{{f^{\perp (1) q}}}` * - :math:`{\cal F}_q` - twist-3 - :math:`\frac{2M^2}{\omega_q}` - :math:`{{h^{\perp (1) q}_T}}` * - :math:`{\cal F}_q` - twist-3 - :math:`\frac{2M^2}{\omega_q}` - :math:`{{h^{(1) q}_T}}` * - :math:`{\cal F}_q` - twist-3 - :math:`\frac{2M^4}{\omega_q^2}` - :math:`{{f^{\perp(2)q}_{T} }}` * - :math:`{\cal C}_q` - FF - :math:`1` - :math:`{{d_1^{q}}}` * - :math:`{\cal C}_q` - Collins - :math:`\frac{2z^2m_h^2}{\omega_q}` - :math:`{{H^{\perp(1)q}_{1} }}` twist-3 functions can be related to twist-2 functions using the following formulas: .. math:: \begin{align} g^{q}_{T}(x) = \int_x^1\frac{ d y}{y}\,g_1^q(y) \\ \end{align} .. math:: \begin{align} xg^{\perp(2)q}_{T}(x) = \frac{\left_{g^{\perp (1) q}_{1T}}}{M^2}\; g^{\perp (1) q}_{1T}(x)\\ \end{align} .. math:: \begin{align} x\,f^{\perp (1) q}(x) = \frac{\left_{f_1}}{2M^2}\,f_1(x)\\ \end{align} .. math:: \begin{align} -\frac{1}{2}x(h^{\perp (1) q}_T(x)-h^{(1) q}_T(x)) = \frac{\left_{h_1^q}}{2M^2}\;h_1^q(x) \end{align} .. math:: \begin{equation} -\frac{1}{2}x(h^{\perp (1) q}_T(x)+h^{(1) q}_T(x)) = h^{\perp(2)q}_{1T}(x) \end{equation} .. list-table:: Structure functions in terms of partonic d.o.f :header-rows: 1 * - :math:`F_i` - standard notation - :math:`{\cal K}_q` - :math:`{\cal F}_q(x)` - :math:`{\cal D}_q(z)` * - :math:`F_1` - :math:`F_{UU,T}` - :math:`x` - :math:`f_1` - :math:`d_1` * - :math:`F_2` - :math:`F_{UU,L}` - :math:`0` - :math:`0` - :math:`0` * - :math:`F_3` - :math:`F_{LL}` - :math:`x` - :math:`{g_1^q}` - :math:`{d_1^q}` * - :math:`F_4` - :math:`F_{UT}^{\sin(\phi_h+\phi_S)}` - :math:`\frac{2xz{P^h_{\perp}} m_h}{w_q}` - :math:`{h_1^q}` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_5` - :math:`F_{UT,T}^{\sin(\phi_h-\phi_S)}` - :math:`-\frac{2xzM{P^h_{\perp}}}{w_q}` - :math:`{f^{\perp(1)q}_{1T}}` - :math:`{d_1^q}` * - :math:`F_6` - :math:`F_{UT,L}^{\sin(\phi_h-\phi_S)}` - :math:`0` - :math:`0` - :math:`0` * - :math:`F_7` - :math:`F_{UU}^{\cos(2\phi_h)}` - :math:`\frac{4xz^2M{P^h_{\perp}}^2m_h}{w_q^2}` - :math:`{h^{\perp(1)q}_1}` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_8` - :math:`F_{UT}^{\sin(3\phi_h-\phi_S)}` - :math:`\frac{2xz^3{P^h_{\perp}}^3m_hM^2}{w_q^3}` - :math:`{h^{\perp(2)q}_{1T}}` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_9` - :math:`F_{LT}^{\cos(\phi_h-\phi_S)}` - :math:`\frac{2xzM{P^h_{\perp}}}{w_q}` - :math:`{g^{\perp (1) q}_{1T}}` - :math:`{d_1^q}` * - :math:`F_{10}` - :math:`F_{UL}^{\sin(2\phi_h)}` - :math:`\frac{4xz^2M{P^h_{\perp}}^2m_h}{w_q^2}` - :math:`{h^{\perp (1) q}_{1L}}` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_{11}` - :math:`F_{LT}^{\cos\phi_S}` - :math:`-\frac{2M}{Q}x` - :math:`{g^{q}_{T}}` - :math:`{d_1^q}` * - :math:`F_{12}` - :math:`F_{LL}^{\cos\phi_h}` - :math:`-\frac{2xz{P^h_{\perp}}}{Q}\frac{{\left}}{w_q}` - :math:`{g_1^q}` - :math:`{d_1^q}` * - :math:`F_{13}` - :math:`F_{LT}^{\cos(2\phi_h-\phi_S)}` - :math:`-\frac{2xz^2M^3{P^h_{\perp}}^2}{Q}\frac{1}{w_q^2}` - :math:`x{g^{q}_{T}}_{\perp}` - :math:`{d_1^q}` * - :math:`F_{14}` - :math:`F_{UL}^{\sin\phi_h}` - :math:`\frac{4Mm_h}{Q}\frac{{P^h_{\perp}}z}{w_q}` - :math:`{h^{\perp (1) q}_{1L}}` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_{15}` - :math:`F_{LU}^{\sin\phi_h}` - :math:`0` - :math:`0` - :math:`0` * - :math:`F_{16}` - :math:`F_{UU}^{\cos\phi_h}(i)` - :math:`0` - :math:`{h^{\perp(1)q}_1 }` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_{16}` - :math:`F_{UU}^{\cos\phi_h}(ii)` - :math:`-\frac{2M}{Q}\frac{2xz{P^h_{\perp}}M}{w_q}` - :math:`xf^{\perp (1) q}` - :math:`{d_1^q}` * - :math:`F_{17}` - :math:`F_{UT}^{\sin\phi_S}(i)` - :math:`0` - :math:`{f^{\perp(1)q}_{1T}}` - :math:`{d_1^q}` * - :math:`F_{17}` - :math:`F_{UT}^{\sin\phi_S}(ii)` - :math:`\frac{2M}{Q}\frac{4xz^2m_hM}{w_q}(1-\frac{{P^h_{\perp}}^2}{w_q})` - :math:`-\frac{1}{2}x({h^{\perp (1) q}_T}-{f^{\perp(2)q}_{T} })` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_{18}` - :math:`F_{UT}^{\sin(2\phi_h-\phi_S)}(i)` - :math:`\frac{2M}{Q}x\frac{M^2z^2{P^h_{\perp}}^2}{w_q^2}` - :math:`x{f^{\perp (1) q}}` - :math:`{d_1^q}` * - :math:`F_{18}` - :math:`F_{UT}^{\sin(2\phi_h-\phi_S)}(ii)` - :math:`-\frac{2M^2}{Q}x\frac{4z^2{P^h_{\perp}}^2Mm_h}{w_q^2}` - :math:`-\frac{1}{2}x({h^{\perp (1) q}_T}+{f^{\perp(2)q}_{T} })` - :math:`{H^{\perp(1)q}_{1}}` * - :math:`F_{19}` - :math:`F_{\rm CAHN}^{\cos(2\phi_h)}` - :math:`\frac{1}{Q^2}\frac{2xz^2{P^h_{\perp}}^2{\left}^2}{w_q^2}` - :math:`{f_1^q}` - :math:`{d_1^q}`